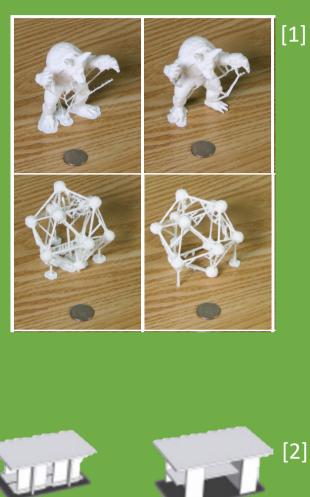
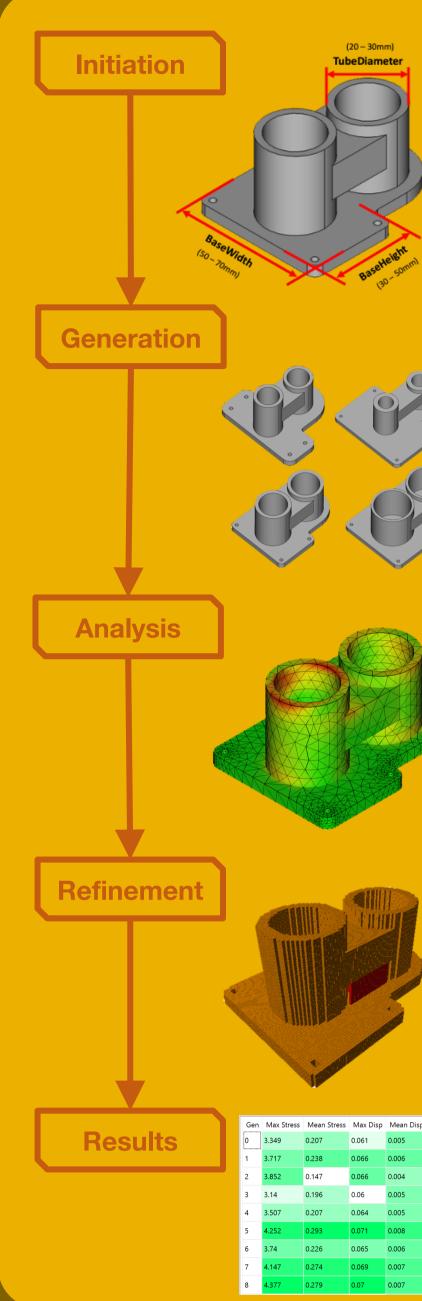
## Leveraging Generative **Design in Design for Additive Manufacturing**


Supervisor: Dr Nic Zhang **Assessor:** Dr Rob Wortham

# **The Problem**


Additive Manufacturing and 3D printing are becoming increasingly popular, both in industry and for hobbyists. But the tools and methods used for designing accordingly haven't kept pace.

Generative Design is a growing design technique that uses algorithms to automatically produce many designs.

Generative Design shows potential as an assistive tool in Design for Additive Manufacturing (DfAM). The goal of this project is to develop a CAD plug-in or tool that assists users with optimising their designs for this purpose.







# **The Results**

A number of design case studies were devised to test how practical and effective the solution was. These were the most prominent case studes

#### Case Study 1: Bicycle seat

#### Task

Parameterise and generate new designs for a bicycle seat shell to try and find different designs

#### Objective

• Explore the creative design space

#### Results

- Good variety of designs produced successfully
- Successful demonstration of the plugin's ease of use

# Task

• 34% decrease in volume **Successful demonstration** • that the plugin aids the designer's creative process

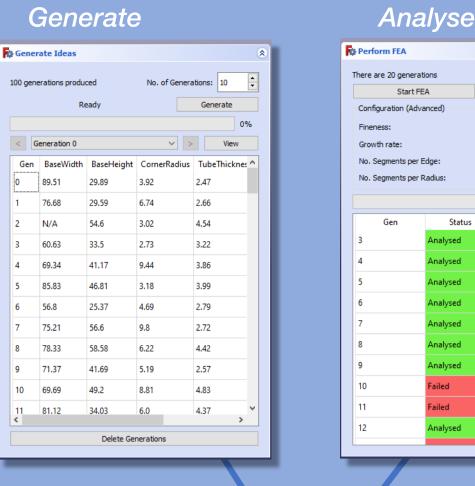
### MEng Integrated Mechanical and Electrical Engineering

References: [1] Krish S. A practical generative design method. CAD Comput Aided Des [Internet]. 2011;43(1):88–100. Available from: http://dx.doi.org/10.1016/j.cad.2010.09.009 [2] Vanek J, Galicia JAG, Benes B. Clever Support: Efficient Support Structure Generation for Digital Fabrication. Eurographics Symp Geom Process. 2014;33(5).

# **The Process**

be varied

constraints


• Define parameters to

Define loads and

- Produce many part generations by varying the parameters



- Analyse the mechanical performance for all generations
- Calculate part volume for 3D printing
- Generate support material
- Calculate statistics for all generations
- Choose the best generation



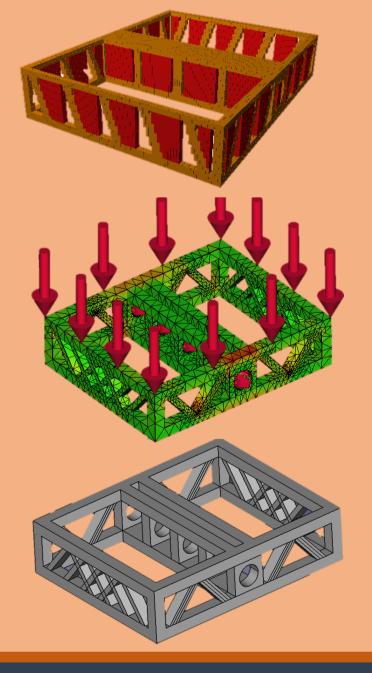
| Perform FEA        |           |                        |
|--------------------|-----------|------------------------|
| There are 20 gener | ations    | 14 successful analyses |
| Start              | FEA       | Delete analyses        |
| Configuration (Ad  | lvanced)  |                        |
| Fineness:          |           | UserDefined V          |
| Growth rate:       |           | 0.30 🚖                 |
| No. Segments pe    | -         | 1                      |
| No. Segments pe    | r Radius: | 3                      |
|                    |           | 0%                     |
| Gen                | Status    | ^                      |
| 3                  | Analysed  |                        |
| 4                  | Analysed  |                        |
| 5                  | Analysed  |                        |
| 6                  | Analysed  |                        |
| 7                  | Analysed  |                        |
| 8                  | Analysed  |                        |
| 9                  | Analysed  |                        |
| 10                 | Failed    |                        |
| 11                 | Failed    |                        |
| 12                 | Analysed  |                        |

Initiate

| 🙀 Initialise parameters |       |       |    |       | ۲        |
|-------------------------|-------|-------|----|-------|----------|
| 6 parameters detected   |       |       |    | +     | -        |
| Parameter               | Value | Min   |    | Max   |          |
| BaseWidth               | 60.0  | 60.00 | -  | 61.00 | -        |
| BaseHeight              | 40.0  | 40.00 | -  | 41.00 | -        |
| CornerRadius            | 4.0   | 4.00  | \$ | 5.00  | \$       |
| TubeThickness           | 3.0   | 3.00  | \$ | 4.00  | <b>÷</b> |
| TubeDiameter            | 30.0  | 30.00 | -  | 31.00 | <b>÷</b> |
| ShaftDistance           | 37.0  | 37.00 | -  | 38.00 | -        |
|                         |       |       |    |       |          |

# **The Solution**

- A CAD plugin for FreeCAD
- Iterative and modular design
- Designed to be assistive and supportive for designers
- Open-source and customisable
- User-friendly interface


#### Case Study 2: **Bicycle pedal**

Design an optimise a bicycle peal made from a frame of struts for 3D printing

#### **Objectives**

• Minimise part volume • Minimise support structures

#### **Results**:



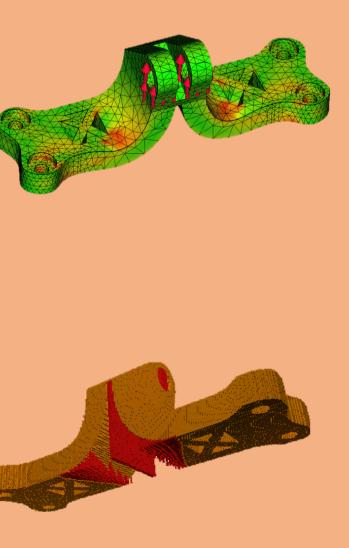
#### **Case Study 3: GE Jet Bracket**

🗐 🤹 🧭 📠

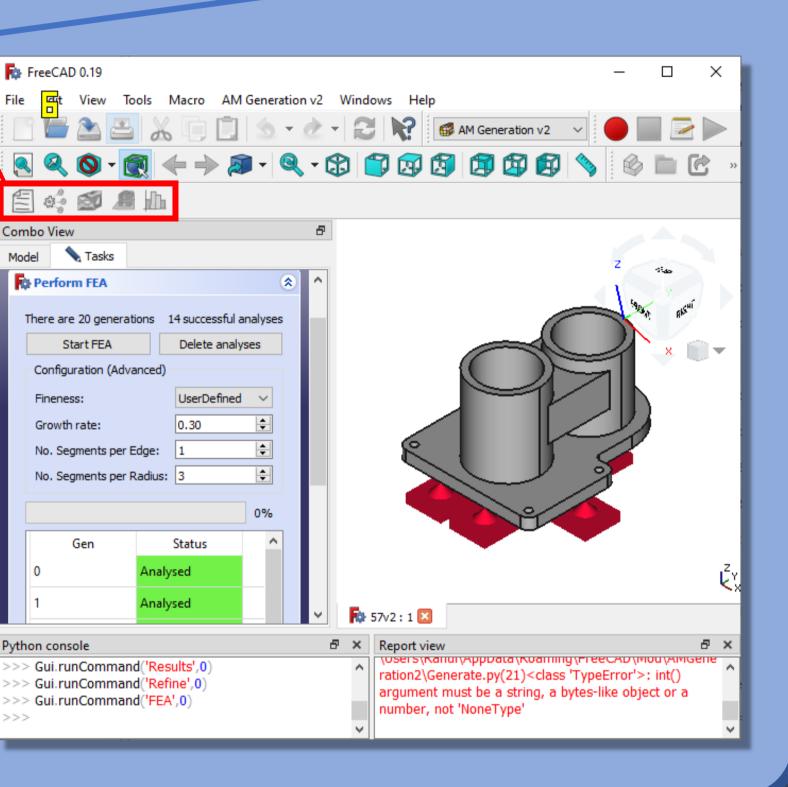
#### Task

Take an existing optimised design for a part and improve on it by combining other ideas

#### **Objectives**


- Minimise part volume
- Maximise mean stress

#### **Results:**


- Modest 4.3% decrease in part volume
- Significant increase in mean stress
- Low support volume ratio of 0.1



## **Rahul Jhuree**



| Additive Man                         | ufacturing Refinemen   | t             | ۲           | Fo | Result               | ts                |                 | _         |             |
|--------------------------------------|------------------------|---------------|-------------|----|----------------------|-------------------|-----------------|-----------|-------------|
| There are 20 gen<br>14 generations a |                        | All volu      | umes in mm3 | -  | tress in<br>isplacer | MPa<br>ment in mm |                 |           |             |
| 0 generations vo<br>Refinements      | xelised                |               |             |    | Gen                  | Max Stress        | Mean Stress     | Max Disp  | Mean Disp   |
| Build volum                          | e                      |               |             |    | 0                    | 3.349             | 0.207           | 0.061     | 0.005       |
|                                      | -<br>ucture generation |               |             |    | 1                    | 3.717             | 0.238           | 0.066     | 0.006       |
| Resolution 1.0                       | 0 😫                    |               |             |    | 2                    | 3.852             | 0.147           | 0.066     | 0.004       |
|                                      |                        | 0% R          | efine       |    | 3                    | 3.14              | 0.196           | 0.06      | 0.005       |
| Results                              |                        |               |             |    | 4                    | 3.507             | 0.207           | 0.064     | 0.005       |
| < Genera                             | tion 0                 | ~ > V         | /iew        |    | 5                    | 4.252             | 0.293           | 0.071     | 0.008       |
| Gen                                  | Part Volume            | Support Volum | e :^        |    | 6                    | 3.74              | 0.226           | 0.065     | 0.006       |
| 0                                    | 40848                  | 1978          | 0.0         |    | 7                    | 4.147             | 0.274           | 0.069     | 0.007       |
| 1                                    | 49076                  | 3770          | 0.0         |    | 8                    | 4.377             | 0.279           | 0.07      | 0.007       |
| 2                                    | 46202                  | 3834          | 0.0         |    | 9                    | 2.957             | 0.175           | 0.058     | 0.004       |
| 3                                    | 48070                  | 3156          | 0.0         |    | Config               | ure results viev  | v               |           |             |
| 4                                    | 48474                  | 3568          | 0.0         |    |                      | letric            | Scale           | Ra        | ange        |
| 5                                    | 41916                  | 3012          | 0.0         |    | - M-                 | Sol<br>x Stress   | id Gradient Mir | n<br>96 🗘 | Max<br>4.38 |
| 6                                    | 46646                  | 3500          | 0.0         |    |                      | an Stress         |                 |           |             |
| <                                    |                        |               | >           |    | Ma                   | -                 |                 |           |             |



# Conclusion

These results show that the foundation for a Generative Design for Additive Manufacturing (G-DfAM) software module has been successfully built.

This is a good step towards democratisation of Generative Design and more broadly Artificial Intelligence in design.

Faculty of Engineering & Design



